590 research outputs found

    Is U.S. health care an appropriate system? A strategic perspective from systems science

    Get PDF
    <p>Abstract</p> <p>Context</p> <p>Systems science provides organizational principles supported by biologic findings that can be applied to any organization; any incongruence indicates an incomplete or an already failing system. U.S. health care is commonly referred to as a system that consumes an ever- increasing percentage of the gross domestic product and delivers seemingly diminishing value.</p> <p>Objective</p> <p>To perform a comparative study of U.S. health care with the principles of systems science and, if feasible, propose solutions.</p> <p>Design</p> <p>General systems theory provides the theoretical foundation for this observational research.</p> <p>Main Outcome Measures</p> <p>A degree of compliance of U.S. health care with systems principles and its space-time functional location within the dynamic systems model.</p> <p>Results of comparative analysis</p> <p>U.S. health care is an incomplete system further threatened by the fact that it functions in the zone of chaos within the dynamic systems model.</p> <p>Conclusion</p> <p>Complying with systems science principles and the congruence of pertinent cycles, U.S. health care would likely dramatically improve its value creation for all of society as well as its resiliency and long-term sustainability.</p> <p>Immediate corrective steps could be taken: Prioritize and incentivize <it>health </it>over <it>care</it>; restore fiscal soundness by combining health and life insurance for the benefit of the insured and the payer; rebalance horizontal/providers and vertical/government hierarchies.</p

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Multi-drug resistant Acinetobacter infections in critically injured Canadian forces soldiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Military members, injured in Afghanistan or Iraq, have returned home with multi-drug resistant <it>Acinetobacter baumannii </it>infections. The source of these infections is unknown.</p> <p>Methods</p> <p>Retrospective study of all Canadian soldiers who were injured in Afghanistan and who required mechanical ventilation from January 1 2006 to September 1 2006. Patients who developed <it>A. baumannii </it>ventilator associated pneumonia (VAP) were identified. All <it>A. baumannii </it>isolates were retrieved for study patients and compared with <it>A. baumannii </it>isolates from environmental sources from the Kandahar military hospital using pulsed-field gel electrophoresis (PFGE).</p> <p>Results</p> <p>During the study period, six Canadian Forces (CF) soldiers were injured in Afghanistan, required mechanical ventilation and were repatriated to Canadian hospitals. Four of these patients developed <it>A. baumannii </it>VAP. <it>A. baumannii </it>was also isolated from one environmental source in Kandahar – a ventilator air intake filter. Patient isolates were genetically indistinguishable from each other and from the isolates cultured from the ventilator filter. These isolates were resistant to numerous classes of antimicrobials including the carbapenems.</p> <p>Conclusion</p> <p>These results suggest that the source of <it>A. baumannii </it>infection for these four patients was an environmental source in the military field hospital in Kandahar. A causal linkage, however, was not established with the ventilator. This study suggests that infection control efforts and further research should be focused on the military field hospital environment to prevent further multi-drug resistant <it>A. baumannii </it>infections in injured soldiers.</p

    Assessing the level of healthcare information technology adoption in the United States: a snapshot

    Get PDF
    BACKGROUND: Comprehensive knowledge about the level of healthcare information technology (HIT) adoption in the United States remains limited. We therefore performed a baseline assessment to address this knowledge gap. METHODS: We segmented HIT into eight major stakeholder groups and identified major functionalities that should ideally exist for each, focusing on applications most likely to improve patient safety, quality of care and organizational efficiency. We then conducted a multi-site qualitative study in Boston and Denver by interviewing key informants from each stakeholder group. Interview transcripts were analyzed to assess the level of adoption and to document the major barriers to further adoption. Findings for Boston and Denver were then presented to an expert panel, which was then asked to estimate the national level of adoption using the modified Delphi approach. We measured adoption level in Boston and Denver was graded on Rogers' technology adoption curve by co-investigators. National estimates from our expert panel were expressed as percentages. RESULTS: Adoption of functionalities with financial benefits far exceeds adoption of those with safety and quality benefits. Despite growing interest to adopt HIT to improve safety and quality, adoption remains limited, especially in the area of ambulatory electronic health records and physician-patient communication. Organizations, particularly physicians' practices, face enormous financial challenges in adopting HIT, and concerns remain about its impact on productivity. CONCLUSION: Adoption of HIT is limited and will likely remain slow unless significant financial resources are made available. Policy changes, such as financial incentivesto clinicians to use HIT or pay-for-performance reimbursement, may help health care providers defray upfront investment costs and initial productivity loss

    EMMIE and engineering: What works as evidence to improve decisions?

    Get PDF
    While written by a proponent of realism, this article argues in favour of a pragmatic approach to evaluation. It argues that multiple sources of evidence collected using diverse research methods can be useful in conducting informative evaluations of programmes, practices and policies. It argues in particular that methods, even if their assumptions appear incommensurable with one another, should be chosen to meet the evidence needs of decision-makers. These evidence needs are captured in the acronym, EMMIE, which refers to Effect size, Mechanism, Moderator (or context), Implementation and Economic impact. Finally the article questions evidence hierarchies that are inspired by clinical trials, and suggests instead that, notwithstanding the clear differences in the physical and social worlds, engineering may provide a superior model for evaluators to try to emulate. And engineering is, above all, a pragmatic field
    corecore